It might appear that men are neglected when it comes to the fertility clinic. This isn’t really the case, it’s just that female infertility is usually overcome by treating the woman and male infertility is also often a matter treating the female, sometimes with sperm that has been specially prepared or obtained. The primary purpose of the semen analysis is to decide whether any intervention is necessary and if so, to select the most appropriate way forwards. What follows is a brief guide to the tests that the semen laboratory will carry out along with an explanation of what the results mean.
Producing the sample
The best semen sample is obtained after between 2 – 3 days sexual abstinence. Abstaining for more than 5 days provides a lower quality sample. The sample should ideally be produced by masturbation into a sterile container that is not cytotoxic to the sperm. It is important that the semen sample is analysed soon after production, and also that it is not exposed to extremes of temperature etc. For these reasons it is better to go to the seminology laboratory and produce the sample there. The lab will have special rooms set aside for sperm sample production and are experienced in handling these matters sensitively and professionally.
The sample can be produced at home in a suitable container, but in this case it must be delivered to the laboratory as soon as possible, ideally within an hour. Sometimes the sample can be obtained following normal intercourse using a special condom. This is not the preferred method due to significant losses and delay in analysis. It is extremely important that only the correct condom supplied for this specific purpose is used, ordinary condoms contain spermicides that will be very harmful to the sperm.
Macroscopic evaluation
This is simply the visual inspection and measurement of the sample. Firstly, the volume is measured and is typically between 1.5 – 5.0 ml. To give some sense of scale, a teaspoon contains around 5ml of liquid. Next is the appearance of the sample. It should be white, maybe slightly off white and translucent, that is, you cannot see through it but it allows light to pass through. An opaque sample can be a sign of infection.
Immediately after ejaculation the semen is a viscous, sticky semi-liquid which is quite difficult for the sperm to swim through. This is an evolutionary adaptation to deposit the sperm in in one location, providing a concentrated base for the journey to the egg. After about 10 minutes the semen undergoes a process that biochemically resembles blood clotting, except in reverse, and the semen becomes a free flowing liquid. This process is called liquefaction and is usually reported in the analysis as being complete or incomplete. Incomplete liquefaction is not necessarily a cause of infertility, but like an abnormal sample volume, it may give an indication to the functioning of accessary sex organs such as the seminal vesicles or prostate.
Finally, the pH of the sample is measured and should be slightly alkaline at pH 7.2 or greater. An acidic sample with pH less than this is likely to indicate problems related to the seminal vesicles.
Microscopic evaluation
Initial examination of the sample under the microscope will reveal the presence of any cellular debris and also whether the sperm are freely swimming or agglutinated together in clumps. Either of these situations can indicate infection or trauma. A certain amount of cellular debris can be disregarded, but high levels of agglutination may impact of fertility.
Sperm count
This is usually expressed as the number of sperm per millilitre (ml) of semen; as such is it really sperm concentration. The total sperm count is the concentration multiplied by the volume (in ml). The minimum sperm concentration that is considered within the normal range is 15 million/ml. So a man at the minimum end of the normal range of concentration and volume (1.5ml) would have a total sperm count of 1.5 x 15million = 22.5 million sperm in total. Having a concentration lower than 15 million/ml is termed oligozoospermia, a volume of less than 1.5ml is called hypospermia. As you can see the total numbers of sperm are extremely large, especially when you consider that only a single spermatozoon is required to fertilise the egg. Having a low sperm count does not mean that you are infertile, lower sperm counts may reduce the chances of a pregnancy each month. While ever there are any sperm present there is always the possibility of pregnancy. The chances of pregnancy can be increased dramatically by assisted reproduction in which the sperm are prepared and enriched in the laboratory.
Motility
This refers to two things, the number of sperm that are actively swimming (total motility), expressed as a percentage; and secondly the percentage of sperm that are making forward progress, usually termed progressive motility. Some sperm will be swimming actively, but going in circles or spinning on their axis, which is not likely to get them to the egg. These sperm would be termed motile but non-progressive. It is really the sperm that are both motile and progressive (swimming in a straight line) that is the key number. The medical term used to describe poor motility is asthenozoospermia. The lower value of the normal fertile range for total motility is 40% and for progressive motility is 32%. These figures seem a little arbitrary, and they are simply based on statistics, but motility remains the single most useful predictor of fertility.
Having said this, assisted reproduction techniques now extend to selecting a single sperm and physically injecting it into the egg. This technique is called intracytoplasmic sperm injection (ICSI), so even men with zero motility can become fathers so long as some sperm can be found.
Morphology
Morphology simply refers to the shape of the sperm. Part of the sample is prepared to allow easy visualisation of sperm structure so that the proportion of normal sperm, and those falling into tightly defined morphological groups may be counted. The World Health Organisation (WHO) lay down strict morphological criteria defining the various sperm defects and these are usually simplified for reporting as the percentage of sperm exhibiting head, midpiece or tail defects. The effect of this is that quite often only a very small proportion of sperm are categorised as normal. In fact a semen sample is considered morphologically normal if 6% of the sperm fulfil the normal criteria. Put another way, a sample may exhibit 94% abnormal morphology and still be within the normal range.
The WHO morphology definitions are very specific so that semen quality can be recorded extremely accurately. Having abnormally shaped sperm is known as teratozoospermia. It’s quite likely that some of the sperm that are categorised as abnormal may actually function normally, but even if this were not so, an average semen sample containing say 100 million sperm in total, where 94% of them were classed as morphologically abnormal, would still have 6 million normal sperm available!
Vitality
Vitality refers to the proportion of sperm that are dead or alive. Of course all the sperm that are actively swimming are alive, but it is not possible to distinguish live from dead sperm among those that are immotile. This is achieved by mixing some of the sample with a dye that is excluded by living cells, but is able to enter dead cells staining them blue. The results are reported as the percentage of sperm that are alive. The minimum vitality that is considered normal is 58% and the medical term for values lower than this necrozoopermia. Tests of vitality are particularly important in situations where there is very low sperm motility and ICSI is being considered.
Other cells
There may be some other cells in the ejaculate, most notably white blood cells (lymphocytes), red blood cells (erythrocytes) or immature sperm cells. Erythrocytes are distinctively red in colour, small and without a nucleus; their presence is called haemospermia and indicates infection or trauma. Similarly, white blood cells indicate infection or inflammation, but these cells are often difficult to distinguish from immature sperm cells. Both these types of cells are referred to as round cells and they can be identified by detecting cells that express an enzyme called peroxidase. Immature sperm cells are peroxidase negative and most immune cells are positive for peroxidase. The maximum concentration of round is considered to be normal is around 1.0 million/ml.
Antisperm antibodies
Antibodies are proteins produced by the immune system that bind to foreign invaders in the body such as viruses and bacteria. They are one of the ways in which the body discriminates between self and non-self and we would not normally expect them to bind to our own cells. However, the testis is normally protected and sperm do not come into contact with the immune system. This can occur in cases of testicular injury, biopsy or vasectomy reversal and in a few cases a man may make antibodies against his own sperm.
The mixed antiglobulin reaction (MAR) test is included in some routine semen analyses and this is able to detect antisperm antibody. Results are usually expressed as the percentage of sperm bound by antibody, and two subclasses of antibody (IgG and IgA) are commonly recorded. Anything less than 10% is considered negative and due to non-specific binding, but there are no concrete reference values for a positive result. The WHO currently regard 50% or greater as a level likely to affect fertility, but this value is pending until further evidence is available. Problems involving antisperm antibody can usually be successfully overcome using IVF or ICSI.
What if there are no sperm at all?
Even situations where there are no sperm in the ejaculate at all are not hopeless. A complete absence of sperm is called azoospermia and if this appears to be the case the first thing the seminologist will do is to centrifuge the semen sample, so that any cells or particulate material settle as a pellet at the bottom of the tube. The pellet is then examined microscopically, if there are any sperm in the sample then this is where they will be. Finding a single sperm here will open the door to ICSI. In some instances sperm can undergo retrograde ejaculation into the bladder rather than forming part of the ejaculate, and a similar centrifugation method can be used to retrieve them from a urine sample.
Assuming all this is carried out and still no sperm can be found, an important possibility still remains. One of the main causes of azoospermia is congenital absence of the vas deferens. The vas deferens is a structure that connects the testis to the ejaculatory ducts. In around 1 – 2% of men with fertility problems this structure is missing. These men usually produce normal sperm but they do not reach the ejaculatory ducts where they are mixed with secretions from the seminal vesicles and prostate gland at the moment of ejaculation. So the semen appears normal except for a complete absence of sperm. In fact any blockage to the normal path of the sperm whether congenital or acquired can be resolved by extracting sperm from the testes via a fine needle, followed by ICSI.
Summary
The semen analysis provides a lot of information and requires very careful interpretation. Having parameters outside the normal range does not necessarily indicate infertility. Sometimes low sperm counts or poor motility etc may decrease the chances of pregnancy each month, but while ever there are sperm in the ejaculate the chances are not zero. Most sperm problems can be addressed using modern sperm preparation techniques. For example, it is possible to select the most morphologically normal and best swimming sperm in the laboratory and introduce these into the womb, a technique call intra-uterine insemination (IUI). In cases of low sperm numbers, in-vitro fertilisation (IVF) where the sperm are prepared in the lab and then mixed with the egg in a tiny drop could be the best option. Where there is low motility, or even when none of the sperm are swimming, then intra-cytoplasmic sperm injection (ICSI) where an individual sperm is injected into the egg may be the answer. Sperm may even be directly obtained from the testis in some cases where no sperm are present in the ejaculate. The semen analysis is a vital tool in evaluating and solving the couple’s infertility problems.
Science Director Concept Fertility Clinic www.conceptfertility.com